
1 

The Scale-Adaptive Simulation Method for 

Unsteady Turbulent Flow Predictions. Part 1: 

Theory and Model Description 

F. Menter1 and Y. Egorov1  

1
 ANSYS Germany GmbH, Staudenfeldweg 12, 83624 Otterfing, Germany 

Phone: +49(0)8024 9054 15 

Fax:  +49(0)8024 9054 17 

E-mail: florian.menter@ansys.com 

www.ansys.com 

 

The article gives an overview of the Scale-Adaptive Simulation (SAS) method developed by the 

authors during the last years. The motivation for the formulation of the SAS method is given and a 

detailed explanation of the underlying ideas is presented. The derivation of the high-Reynolds 

number form of the equations as well as the calibration of the constants is provided. The concept 

of SAS is explained using several generic examples and testcases.  
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Abbreviations: 

EARSM: explicit algebraic RSM; 

DES: detached eddy simulation; 

DIT: decaying isotropic turbulence; 

HWN: high wave number (damping); 

KSKL: K Square-root-K L (model) 

LES: large eddy simulation; 

MILES: monotonically integrated LES; 

RANS: Reynolds-averaged Navier-Stokes (equations); 
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SAS: scale-adaptive simulation; 

SKL: Square-root-K L (model); 

SST: Shear-Stress Transport (model); 

URANS: unsteady RANS; 

WALE: wall-adapting local eddy viscosity (model). 
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Introduction 

Since the introduction of two-equation models by Kolmogorov in 1942 (see 

Moffat [24], Wilcox [37]), they form the foundation of essentially all statistical 

turbulence models. Two-equation models reflect the basic idea that the minimum 

information required for modelling the effect of turbulence on the mean flow are 

two independent scales, obtained from two independent transport equations (e.g. 

Launder and Spalding, [11]). Two-equation models also form the core of higher 

order models like full Reynolds Stress models (RSM) (Rotta, [30], Launder et al., 

[12]) or Explicit Algebraic Reynolds Stress Models (EARSM) (Pope, [26], Rodi, 

[27], Gatski and Speziale, [9], Wallin and Johansson, [36]) or non-linear stress-

strain models (Craft et al., [4]). Even one-equation models (Baldwin and Barth, 

[1], Menter, [14, 15], Spalart and Allmaras, [31]) using the eddy viscosity as a 

single variable, can be derived from two-equation models using equilibrium 

assumptions (Menter, [14, 15]).  

 

From a more fundamental standpoint, all the currently used models suffer from 

lack of an underlying exact transport equation, which could serve as a guide for 

the model development on a term-by-term basis. The reason for this deficiency 

lies in the observation that the exact equation for ε (or ω) does not describe the 

large scales, but the dissipative scales. The goal of a two-equation model is 

however the modelling of the influence of the large scale turbulence on the mean 

flow. Due to the lack of an exact equation, the ε- and the ω-equations are 

modelled in analogy with the equation for the turbulent kinetic energy, k, using 

purely heuristic arguments. This has several disadvantages. The first is that 

important terms and physical effects can be missed in the derivation. The second 

is that additional effects like compressibility, buoyancy, etc. cannot be modelled 

on an exact basis.  

 

A more consistent approach for formulating a scale equation has been developed 

by Rotta ([29, 30]). Instead of using purely heuristic and dimensional arguments, 

Rotta formulated an exact transport equation for kL, where L is an integral length 

scale of turbulence and k is the turbulent kinetic energy. Rotta’s equation 

represents the large scales of turbulence and can therefore serve as a basis for 
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term-by-term modelling. The distinguishing factor of the model proposed by 

Rotta was the appearance of a length scale in the source terms of the kL-equation, 

involving a higher derivative of the velocity field. This resulted from the analysis 

of one of the terms in the exact equation. The availability of an inherent length 

scale is an attractive feature, because it allows a more subtle reaction of the model 

to resolved flow features. However, the third derivative proposed by Rotta turned 

out to be problematic and was never actually used in any of the kL-variants. There 

are several reasons for the omission of this term. The most important is that it is 

not intuitively clear, why the third derivative should be more relevant than the 

second derivative in determining the length scale. In addition, a third derivative is 

a tedious quantity to compute in a general-purpose CFD code and can easily result 

in numerical instabilities. With the omission of the higher derivative term, the k-

kL-model lost its main distinguishing feature over the k-ε and the k-ω models. 

Actually, without this term it proved inferior, as it could not be calibrated for the 

logarithmic profile without additional terms depending on wall distance. This 

deficiency has eventually led to the advent of the k-ε model as the major industrial 

two-equation model. The following quote from Rodi [28] stresses that this was 

largely due to the k-kL- models inability of handling the log-layer: “In the late 

60’s and early 70’s, some investigations have been carried out at Imperial 

College, London, with Rotta’s kL equation, but this requires an extra term near the 

wall to conform with the log law. Hence in the early 70’s there was soon a switch 

over to the k-ε model … By choosing the constants properly, the (k-ε) model can 

be made consistent with the log law.” 

 

In recent years, steps of modernizing the kL-equation have been taken (Menter 

and Egorov, [17-20, 22]). It is argued that Rotta’s assumptions, leading to the 

term with the third derivative of the velocity field in his kL-equation, is not 

consistent with the nature of the underlying term in the exact equation. As a result, 

the second derivative appears in the model, satisfying the log-law without the 

need for additional terms. Furthermore, the model lends itself much easier to the 

introduction of robust low-Reynolds number (viscous sublayer model) extensions 

(Menter et al., [21]), than the k-ε model. The new model has been re-formulated 

as a one- and a two-equation model using k LΦ =  as the new scaling variable in 

Menter et al. [21]. While the resulting KSKL ( k k L− ) and SKL ( k L ) models 
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offer interesting alternatives to existing steady RANS models, the more important 

aspect is their ability of resolving unsteady turbulent structures similar to the 

behaviour of Detached Eddy Simulation (DES) models (e.g. Spalart et al. [33], 

Spalart [32], Strelets [35]), but without an explicit  influence of the grid spacing 

on the RANS part of the model.  

 

The behaviour of the model in unsteady flow simulations will be the central 

subject of this article. Some of the underlying assumptions in the model derivation 

will be clarified and the concept of Unsteady RANS (URANS) will be discussed 

in light of the Scale-Adaptive Simulation (SAS) characteristics of the KSKL 

model. It will be shown that the classical URANS behaviour of current turbulence 

models is not a result of the averaging procedure applied to the equations, as 

widely thought in the community, but of the specific way RANS models were 

formulated in the past. This opens the way for using more advanced URANS 

concepts as a basis for unsteady simulations.  

 

Rotta’s k-kL Model 

Basic Formulation 

Almost all two-equation models use the equation for the turbulent kinetic energy, 

k, for determining one of the two independent large scales of turbulence. The 

principal unknown term in the k-equation is the turbulent dissipation rate, ε, which 

has to be obtained from another transport equation. While an exact equation for 

ε can be derived, it is not compatible with the need of describing the large scales 

of turbulence, as the dissipation takes place at the smallest scales of the turbulent 

spectrum. Similar arguments are true for ω, which is sometimes interpreted as the 

rate of dissipation per unit of turbulence kinetic energy (see Wilcox, [37]). In 

order of avoiding the difficulties associated with the exact ε−equation, the model 

equation for the dissipation rate is typically derived on dimensional arguments, 

avoiding a term-by-term modelling of the exact equation. Clearly, such a process 

bears the danger of missing essential physical effects, which might be contained 

in an exact equation system.  
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In order of providing a more solid foundation, Rotta [29] formulated an exact 

transport equation for the variable kL based on the definition of an integral length 

scale, L, and used it as a starting point of a term-by-term closure. This paragraph 

will give a short reminder of Rotta’s derivation. 

 

Assuming flows with a dominant shear strain in the y-direction (shear flows), the 

following length scale, L, can be defined (3/16 is an arbitrary scaling factor): 

( )
yyii drrxRLk ,

16

3 �
∫
∞

∞−

=   (1) 

where k is the turbulent kinetic energy. In this equation, ( , )ii yR x r
�

is the sum of the 

diagonal the two-point correlation tensor measured at a location x
�

 with two 

probes at distance ry: 

 

 

Figure 1: Two-point correlation measurement 

 

In Figure 1, two probes are located at a distance ry. They both measure the three 

fluctuating velocity components ui. The correlation function Rii is then defined as: 

)()( yiiii rxuxuR +=
��

  (2) 

using the summation convention. The overbar represents a time (or ensemble) 

average. It is intuitively clear that the correlation function has a maximum at ry=0 

and decays to zero for large ry, as sketched in Figure 2: 
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Figure 2: Two-point correlation 

 

From Equation 1 it can be seen that the integral length scale, L, is proportional to 

the surface area under the correlation curve shown in Figure 2 divided by the 

turbulent kinetic energy, k. The two-point correlation allows therefore an exact 

definition of an integral length scale, L. Based on this definition, Rotta derived a 

transport equation for the quantity Ψ=kL for shear flows. Including a time 

derivative (assuming ensemble averaging), the equation reads: 
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  (3) 

The first index below the integrals refers to the fixed probe location (grouping as 

indicated by parenthesis for three indices). The mean shear direction in this 

equation is aligned with the y-coordinate. The terms in the equation can be 

interpreted as convection, production, destruction and diffusion in the grouping as 

they appear above. U refers to the (time or ensemble) averaged velocity in x-

direction.  
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Using this equation as a starting point, Rotta models the unknown correlations on 

a term-by-term basis. The first integral term on the left hand side can be neglected 

as it involves derivatives in x-direction, which are small compared to y-

derivatives in shear layers. Therefore, this term is small compared to the integrals 

on the right hand side.  

The most interesting term in Equation 3 is the second term on the right hand side: 
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containing the mean velocity gradient at the location of the second probe. In order 

of modelling this term, Rotta expands the velocity gradient into a Taylor series: 
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which allows taking the derivatives outside the integral: 
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The first term on the right hand side of this equation can be added to the existing 

production term in Equation 3. For the remaining terms, Rotta makes the 

assumption that the term with the second derivative of the mean velocity is 

negligible, leaving the term with the third derivative as the main additional 

contribution to the integral (higher order terms neglected). Furthermore, Rotta 

introduces the following definitions: 
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The underlying assumption being that all lengths-scales based on the integrals in 

Equation 7 are proportional to one another.  

 

The main destruction term is modelled based on dimensional arguments as: 
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Using a slightly simplified diffusion model (in Rotta’s [30] notation it is assumed 

that αL=1.0), the final two-equation model can be written in the following 

boundary-layer form (y is a coordinate across a mixing layer): 
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A factor of 41
µc  in the definition of the eddy viscosity corresponds to the selected 

definition of the length scale L, which returns L=κy in the logarithmic part of a 

near-wall boundary layer. 

 

The constants for the Rotta [30] model are not fully specified but can be estimated 

as follows: 1
ˆ 1.2ζ ≈ based on correlation measurements from Rose (see Rotta, 

[30]) in a homogenous shear flow. Rotta further estimates that 

3
ˆ 0.11 0.13ζ ≈ − which covers the range of plausible Loitsianskii coefficients σ~2-

4 for decaying isotropic turbulence. Assuming further a diffusion coefficient of 

1.0σ Ψ ≈  the value of 
2ζ̂  can be calculated from the logarithmic layer 

requirements: 

2
2 1 32 3/ 4 1/ 2
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2 c cµ µ
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κ σ Ψ
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(κ=0.41) giving values in the range of  ( ) ( )2
ˆ 2.88 3.24ζ ≈ − − − .  
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It is interesting to compare these values with those obtained from transforming the 

standard k-ε model coefficients into the k-kL model ( 1 21.44; 1.92c cε ε= = ). The 

relation is: 

2

3/ 4
1 1 3

5 5ˆ ˆ;
2 2

c c c
εε µζ ζ

 
= − = − 

 
  (12) 

Table 1: Model constants for k-kL model resulting from Rotta’s and from the k-ε model 

 
1ζ̂  2ζ̂  3ζ̂  

Rotta 1.20 (-3.24) – (-2.88) 0.11-0.13 

From k-ε 1.06  0.095 

 

Obviously the k-ε model does not have a term corresponding to 2ζ̂  - the 

logarithmic layer can still be satisfied through the inclusion of the ε-diffusion 

term. It is also interesting that a negative value is required for 2ζ̂  in the Rotta’s 

model, although the original integral is positive in a logarithmic layer. 

Discussion of Rotta’s Model 

The principle difference of the kL-equation to other scale equations is the 

appearance of the third derivative of the velocity field. All other terms are 

equivalent to corresponding terms in the ω- or the ε-equation. This additional term 

is a result of the integral given by Equation 4 and the Taylor series expansion 

given in Equations 5-6. The main assumption made by Rotta is: 

2
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�

  (13) 

leaving the third-derivative term as the leading order contribution. This estimate is 

based on the observation that in homogenous turbulence the function R12 is 

symmetric with respect to ry. The product of R12 ry is therefore asymmetric and the 

integral becomes zero as the contributions from -ry balance the contributions from 

+ry. This eliminates the second derivative term from the expansion and leaves the 

third derivative term as the leading scale-determining quantity.  
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There are several reasons why the third-derivative term is undesirable. The first is 

that it is physically non-intuitive. There is no physical reason, why the third 

derivative should have a strong influence on the definition of a turbulent length 

scale. The second reason why the third derivative is problematic is that it produces 

the incorrect sign in a logarithmic layer. The considered term in Equation 3: 

3 3
2 3

12 23 3

3 1 ( ) ˆ' '
16 2 y y

U x U
R r dr u v L

y y
ζ

∞

−∞

∂ ∂
− → − ⋅
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  (14) 

is positive in a logarithmic layer (R12 being mainly negative and the third 

derivative being positive). It therefore acts as a source term, instead of a sink 

term. However, a sink term is required in order to define a proper length scale. 

Based on the derivation of the term, it is not easily physically justified introducing 

a negative coefficient 2ζ̂ . The final reason why the third derivative term should 

be avoided is that it is difficult to compute in a general purpose CFD code and that 

it is most likely erratic in a three-dimensional flow field.  

 

However, without any higher derivative term, the model has no advantage 

compared to the scale equations derived solely on dimensional arguments. As 

mentioned above, it actually has a disadvantage as it does not allow satisfying the 

logarithmic layer. 

 

The central question is therefore, whether the assumption: 
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is justified.  

 

On closer inspection, the argument that the integral should be evaluated to zero is 

inconsistent. While it is true that the function R12 is symmetric in homogenous 

turbulence, the entire term would be zero under those conditions, as homogenous 

turbulence can only exist in a zero or constant shear environment (i.e. 

2 2 0U y∂ ∂ = ). In other words, the term is an inhomogeneous term by its very 

nature. Menter and Egorov [17] argue therefore that the second derivative term 

should be kept as the leading order term in the equations, instead of the third 
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derivative. Interestingly, this term also provides the correct sign in a logarithmic 

layer.  

 

Rotta’s assumption concerning the second term in the Taylor series expansion had 

a strong and long-lasting effect on the history of turbulence modelling. Due to the 

problems with the third derivative, the community turned to the ε−equation 

instead (Rodi [28]), losing the ability of modelling length scale effects based on 

an exact transport equation. In addition, the ε-equation has proven notoriously 

difficult to be integrated through the viscous sublayer, a problem not observed in 

the kL model. This deficiency alone has resulted in large difficulties in the 

formulation of engineering turbulence models for decades. Even more 

interestingly, the kL model, using the second derivative exhibits an entirely 

different behaviour for unsteady flow simulations (termed SAS below), which is 

beneficial to many engineering flows, as will be shown below. When choosing the 

second velocity derivative instead of the third, this behaviour could have benefited 

Unsteady RANS (URANS) model simulations for several decades, offering an 

attractive alternative to Large Eddy Simulation (LES). One can argue that this 

behaviour for unsteady flows builds a natural bridge between RANS and LES and 

could have avoided the unnatural split of the turbulence community into an 

“engineering” RANS community and a “scientific” LES community, which has 

not been beneficial for either one of these two groups. Finally, the availability of 

SAS at an earlier stage would naturally have had a strong impact on hybrid 

RANS/LES model formulations. As will be shown below, the new SAS models 

can cover a significant portion of flows for which DES models have initially been 

developed.  

 

The KSKL Model 

Model Formulation 

In the previous section, the argument has been made that the function R12 is not 

symmetric in inhomogeneous turbulence – thereby resulting in a non-zero value 

for the integral given in Equation 15. The heuristic correctness of this argument 

can best be explained for the flow in the logarithmic region of the law-of-the-wall. 



12 

In this thought experiment, shown in Figure 3, Probe 1 is fixed and Probe 2 is 

shifted by ry. As the size of the large turbulent eddies increases linearly with 

distance from the wall like L=κy, it is clear that configuration I in Figure 3 will 

result in a smaller correlation than configuration II. Therefore, the correlation 

measured in configuration III is asymmetric with respect to yr± . As a result, the 

integral of Equation 15 is non-zero.  

 

 

Figure 3: Hypothetical experiment in logarithmic layer 

 

In early papers on the new model (e.g. Menter and Egorov, [17]), a linear 

dependency of the term in Equation 15 on the second velocity derivative was 

proposed, whereas in the latest version a quadratic formulation is used (Menter et 

al., [21]). It is clear that the integral itself 12 y yR r dr

∞
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∫ should be zero for 

homogenous turbulence due to the symmetry of the two-point correlations in 

homogenous flows (Rotta’s argument). In other words, this term should be 

proportional to a quantity which is zero under homogenous conditions. Here we 

assume the ratio of the turbulent length scale to the von Karman length scale 

22
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Based on this, the following modelled form of the integral term is therefore 

proposed (κ absorbed in const.): 
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The transformation in Equation 17 involves the recognition that the second 

derivative of U is negative in logarithmic layers. Taking its absolute value 

therefore results in a change of sign of the entire term.  

 

All other terms are modelled like in Rotta’s model: 
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In order to distinguish this new Ψ model Equation (18) from the original Rotta 

Equation (10) the model parameters are written here with a tilde overbar iζ
~

 rather 

than with a caret overbar iζ̂ . 

 

While this equation represents a proper scale equation, which could serve as a 

basis for calibration, it was decided [21] for practical reasons to introduce a 

further step in the derivation and transform the equation to a new variable 

k LΦ = . This variable has the advantage of being directly proportional to the 

eddy viscosity and therefore allows formulating a one-equation model in addition 

to the proposed two-equation model (see Menter et a., [21]). A simple 

transformation of variables leads to the final two-equation model formulation, 

written in the full three-dimensional form (omitting overbars from now on): 
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In the transformation, cross-diffusion terms containing derivatives of k have been 

avoided. These terms result from the transformation of the diffusion term in 

Equation 18. Since this term is a modelled term, there is no reason why the 

diffusion model of Equation 18 should be more accurate than the one of Equation 

19. It should also be noted that the omitted terms do not affect the calibration of 

the constants, as they are zero in the logarithmic layer. For completeness, the 

density was introduced into the equations.  

 

The relationship between the constants of the new model and Rotta’s model is 

(see Table 1): 

2
3/4 1/2 3/4

1 1 2 1 3 3 3

1 1ˆ ˆ; ; ;
2 2

c c cµ µ µ

κ
ζ ζ ζ ζ ζ ζ ζ σ σ

σ
− −

Φ Ψ

Φ

= − = − + = − =  (20) 

where ζ2 comes from the logarithmic layer relationship.  

 

Table 2: Model constants for k-Φ model (current version and transformation from Rotta) 

 ζ1 ζ2 ζ3 σk σΦ 

From k-Ψ 0.7  0.0278-0.0478 1 1 

k-Φ [21] 0.8 1.47 0.0288 2/3 2/3 

 

Parameter values, resulting from a direct transformation of the constants from the 

Rotta’s model, are presented in the first row of Table 2 (note that ζ2 cannot be 

obtained from the transformation, due to the difference between the 2nd and 3rd 

derivative). The second row of the constants are those proposed in Menter et al. 

[21] after some optimization for a range of boundary layer and free shear flows 

(ζ2 results from the logarithmic law). It should be noted that the calibration of the 

constants is not considered final, but is also not critical for the purpose of the 
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present article concentrating on the unsteady behaviour of the model. In Menter et 

al. [21] there are more details concerning the integration of the model through the 

viscous sublayer and the relationship between a one- and two-equation 

formulation. The terminology “KSKL model” results from k k L− (K-Square-

root K L).  

 

The emphasis of the current article is on the unsteady characteristics of the KSKL 

model. However, in order to demonstrate that the model is a suitable RANS 

formulation, Figure 4 shows a comparison of velocity profiles for steady state 

computations around the NACA 4412 airfoil of Coles and Wadcock [2]. The 

figure shows a comparison of the KSKL (two-equation model), SKL (Square-

root-K L) (one-equation model) as given in Menter et al. [21], the SST and the 

Spalart and Allmaras [31] model for the NACA 4412 airfoil of Coles and 

Wadcock [2] at 13.9° and Re=1.5⋅106. It can be seen that the optimized version of 

the KSKL (and the related SKL) model are competitive against the more 

established one- and two-equation turbulence models.  

 

 

Figure 4: Velocity profiles at the upper surface around the trailing edge separation zone for NACA 

4412 airfoil. (1-Eq. SKL, 2-Eq. KSKL model – both models are extensions of the basic version 

given here). 

 

Physical Interpretation 

The exact transport equation underlying the current model indicates that higher 

derivatives of the velocity field should appear in the scale equation. It is 
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interesting to go back to Rotta’s interpretation of the influence of such terms. In 

his book [30] Rotta states (translated from German): “Neglecting the convective 

and diffusive terms and replacing 3/2
c k⋅  with the help of the equation for the 

turbulent kinetic energy, one obtains the following interesting simplification: 

2 2

3 3

/
2

/

U y
L

U y
κ

∂ ∂
=

∂ ∂
  (21) 

This relation has a remarkable similarity to the formula: 

22 /

/

yU

yU
LvK

∂∂

∂∂
= κ   (22) 

which von Karman derived based on similarity arguments”.  

 

This statement indicates, that Rotta viewed it as one of the main characteristics of 

his model, that it provided a natural length scale through the source terms, which 

is missing in all other models. In other words, forming a source term equilibrium 

using k-ε or k-ω type models does not allow the determination of a length L (or 

related) scale. This can best be seen from the standard k-ω model: 
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When considering the turbulence model source terms as a black box, the only 

variable entering from the outside is the shear strain rate S~1/T. The source terms 

can therefore only help determining one turbulence scale – in this case the 

turbulent frequency ω~(1/T)~S. The second scale is not defined from the source 

terms alone.  

 

Despite the widespread usage of two-equation models their mechanism of 

determining the turbulent length scale is often not appreciated. It results from the 

inclusion of the diffusion terms into the estimate as follows (for a generic variable 

Θ):  
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where δ is the thickness of the turbulent layer (shear layer thickness). Introducing 

this estimate into standard two-equation models gives: 

δ~L   (25) 

In other words, the turbulent length scale, L, calculated by a standard two-

equation model, will always approach the thickness of the turbulent layer. As 

stated by Rotta [30], models based on the kL equation behave differently – they 

allow the determination of both turbulent scales from the source terms of the 

models. In the case of the KSKL model, the estimate is L~LvK.  

 

What is the physical meaning of the additional source term, containing LvK? 

Obviously any spatial variation in the strain rate (meaning a non-zero second 

derivative) reduces the effectiveness of the production term in the Φ equation. 

Figure 5 and Figure 6 illustrate the physical plausibility of this model. Under 

constant shear (homogenous conditions, Figure 5) the turnover frequencies of two 

small eddies are the same independent of their location, as they are driven by the 

same constant strain rate, S. They can therefore merge into one larger vortex with 

the same turbulent frequency. This corresponds to the actual situation in constant 

shear flows – the turnover frequency of turbulence is proportional to the strain 

rate while the length scale grows to infinity.  

 

Under non-homogenous conditions (strain rate not constant, Figure 6), the 

individual vortices have locally different turnover frequencies proportional to the 

local strain rate. From a certain size on, they can therefore not merge into a larger 

vortex, as one vortex cannot have two different frequencies. This results in a finite 

vortex size depending on the local strain rate and its spatial variation. The spatial 

variation is given to first order by the von Karman length scale. This is the 

physical rationale why the von Karman length scale should appear in the length 

scale equation of a RANS model formulation. Note that the application of a 

standard two-equation model to a frozen parabolic mean flow would result in an 

infinite length scale, as there is no finite layer thickness – this is intuitively 

incorrect. 
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Figure 5: Turbulent eddies under homogenous (constant) strain. Two small eddies with equal 

turbulent frequency form one larger eddy. 

 

 

 

Figure 6: Turbulent eddies under non-homogenous strain. Individual eddies have different 

turnover frequencies and cannot merge into larger eddy. 

 

It is important to note that under certain conditions, the entire production term in 

the Φ Equation (19) can and should become negative. Assume one could enforce 

a parabolic velocity profile (e.g. through external volume forces) and would start 

with turbulent vortices significantly larger than dictated by the von Karman length 

scale, LvK, then the interaction between the large vortices and the mean velocity 
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gradient would lead to the destruction of the large turbulent eddies until they are 

compatible with the specified velocity field.  

 

Another interesting situation arises in the following generic experiment. 

Assuming again that a 1-D mean flow profile of the form U(y)=U0×sin(λy) could 

be established by external (e.g. magnetic) forces. This mean flow has a 

characteristic length Lr~1/λ. Under such conditions, one would assume that the 

turbulence model would provide a modelled scale which is also L~1/λ as only 

scales smaller than 1/λ have to be modelled (it is physically intuitive that no larger 

turbulent structures can exist in such a mean flow). Nevertheless, standard two-

equation models will return an infinite value for L, as no layer thickness is 

imposed in this flow. If a finite layer thickness is imposed (e.g. by specifying 

walls at / 2yδ δ= ± ) the models would return L~δ again in contradiction with the 

expectation L~1/λ. The new family of models with LvK actually recognizes the 

inherent scale of the mean flow and provides the expected result L~1/λ, 

independent of the size of the layer thickness. This characteristic of the model is 

termed “Scale-Adaptive Simulation - SAS”, as the model can adjust to already 

existing (resolved) scales.  

 

All arguments so far have been based on steady state (RANS) considerations. It 

should be emphasized that the KSKL model is derived entirely based on RANS 

arguments – and arguably in the most consistent way by starting from an exact 

transport equation. However, the above SAS behaviour of the model opens some 

fundamental questions, concerning unsteady flow simulations. The most 

interesting question is, whether the model allows the formation of a turbulent 

spectrum. This was tested by applying the model to the unsteady flow simulation 

around a cylinder in crossflow. Figure 7 shows a comparison of the solutions 

obtained with the SST and the KSKL model. It is clear that the KSKL model 

allows the formation of turbulent structures, not observed in the SST or other 

URANS  models.  
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Figure 7: Circular cylinder in a cross flow at Re=3.6⋅106, Left: SST-URANS, Right: KSKL 

model. Iso-surface of Q=S2-Ω2, coloured according to the eddy viscosity ratio µµt
 (smaller by 

factor 14 in right figure) 

 

How is this possible, considering that the model was derived based on averaged 

equations? The answer depends partly on the question: to which scale will the von 

Karman length scale adjust, given a resolved turbulent flow with a Kolmogorov 

spectrum is provided: 

( ) 35~ −
kkE   (26) 

where k is the wave number. This implies for the velocity derivatives: 

( ) ( ) 6761 ~;~ kkUkkU ′′′   (27) 

meaning that both first and second velocity derivatives are dominated by the 

smallest scales! The von Karman length scale, LvK, is therefore determined by the 

smallest scales in the spectrum. In other words, LvK adjusts to the smallest scales 

resolved. This is a pre-requisite for allowing the formation of the turbulent 

spectrum.  

 

A standard test for the unsteady characteristics of the model is Decaying Isotropic 

Turbulence (DIT). The interest is not in running DIT in RANS mode, meaning 

simply specifying values for k and Φ and following their decay as given by their 

corresponding transport equations. Instead the DIT case is run in “LES”-mode, 

meaning an initially resolved velocity field is specified and its decay is computed. 

In order to obtain initial conditions for k and Φ, the KSKL model equations are 

solved given the frozen resolved initial velocity field (it is again interesting to 
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point out that standard two-equation models would not provide converged 

solutions under such conditions, as the flow is computed with periodic boundary 

conditions, not providing a finite layer thickness). Using these initial conditions, 

the KSKL model is then run coupled with the flow equations. In addition, 

solutions with the LES-WALE model and the standard k-ε model are also 

computed (for k-ε the transformed initial conditions of the KSKL model are used). 

Simulations are computed on a 323 grid using a 2nd order central scheme for the 

convective fluxes.  

 

Figure 8 shows the turbulent spectrum for the Comte-Bellot experiment (Comte-

Bellot and Corrsin, [3]) in comparison with the experimental data after t=2 non-

dimensional times. The most interesting result is that the KSKL model allows the 

formation of a turbulent spectrum, but does not provide sufficient damping at the 

high-wave number limit to dissipate the energy at the smallest scales. This is in 

obvious contradiction to the expectations for URANS models and the new central 

aspect of the model. The k-ε model behaves as expected and damps out the small 

scales quickly, while the WALE model returns its calibrated behaviour in 

agreement with the experimental spectrum. Considering the above arguments, the 

behaviour of the KSKL model is actually not all that surprising, as the von 

Karman scale adjusts to the smallest scales and thereby produces an eddy 

viscosity small enough to allow the formation of even smaller eddies until the grid 

limit is reached. At that point, no smaller eddies can form. However, consistently, 

the partial differential equations of the SAS model, having no information on the 

cut-off limit again provide an eddy viscosity small enough to allow further 

cascading to smaller scales. As this is not possible due to the resolution limit, the 

energy accumulates at the high wave number limit. The behaviour of insufficient 

damping can easily be augmented for practical flow simulations, as will be shown 

later. This behaviour, however, is of significant theoretical interest as it 

contradicts the common expectations concerning URANS models. 
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Figure 8: Turbulent Spectrum for DIT in comparison with exp. Data. LES – WALE model, 

KSKL – without High Wave Number (HWN) Damping at time t=2.  

 

This is a good point for reconsidering the situation. First a new turbulence model 

based entirely on RANS arguments has been derived. It was found that this model 

can be calibrated to produce steady RANS solutions for numerous flows like the 

airfoil flow shown above, or other flows computed by Menter et al. [21]. 

However, under certain conditions, the model violates the expectations 

concerning RANS models and allows the formation of a turbulent spectrum down 

to the grid limit. As RANS is based on averaging out random fluctuations, this 

points to a conceptual problem in the definition of RANS (and more so URANS) 

models. While classical RANS models like k-ε do not show this discrepancy, they 

do however instead produce a disturbing and unphysical behaviour for the generic 

flows discussed above. Especially for the generic 1-D mean flow 

U(y)=U0×sin(λy) it is unphysical that standard models return L → ∞ . In other 

words, both types of models produce results which are intuitively in contradiction 

with expectations. The choice is between models which either do not recognize 

resolved scales at all and thereby allow length scales larger than the driving flow 

scale, or models which do adjust to resolved structures and as a result allow the 

formation of a turbulent spectrum as long as the numerical method and the grid 

and time step allows it. Which behaviour is “correct” cannot be determined, as 
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both types of models are derived on suitable RANS arguments. One could even 

argue that the KSKL model has a stronger theoretical RANS foundation, as it uses 

an exact transport equation as a starting point.  

 

Leaving aside the theoretical considerations and turning to more practical aspects, 

the new model offers an interesting passage into scale-resolving simulations. 

Given that a sufficiently strong instability or an initially resolved flow is present, 

the model allows the formation of a turbulent spectrum, similar to an LES model. 

At the same time, stable flow regions will still be covered in RANS mode. This 

indicates a behaviour similar to the Detached Eddy Simulation (DES) concept 

proposed by Spalart et al. ([32], [33]), but on an entirely different basis and using 

different modelling mechanisms. Some practical results for unsteady simulations 

using the KSKL model will be shown below and in Egorov et al. [7]. 

High Wave Number (HWN) Damping 

The tests for the DIT case have shown that the KSKL model (and other SAS 

models) does not provide sufficient damping of the smallest scales at the grid 

limit. This is not a difficult practical problem, as classical LES technologies can 

be applied for achieving the required dissipation of energy. The simplest and most 

pragmatic way of achieving this goal has turned out to be the enforcement of a 

lower limit on the eddy viscosity coming from the SAS model. The lower limit 

should however not impact steady state RANS solutions. This could be achieved 

by a dynamic LES model, which returns near-zero eddy viscosity for steady state 

RANS flows. A simpler and also satisfactory formulation results from using the 

WALE LES model (Nicoud and Ducros, [25]) for this purpose: 

( )1/4 1/4max , WALE

t t t
c cµ µν ν ν= Φ → = Φ   (28) 

(It might be worthwhile to point out that DES models can be formulated by 

replacing the max function in Equation 28 by a min function and using suitably 

defined RANS and LES models). Figure 9 shows the turbulent spectrum for the 

DIT case computed without and with the limiter.  

 



24 

 

Figure 9: Turbulent spectrum for DIT in comparison with experimental data. The result by the 

KSKL model with HWN damping (circles) coincides with the WALE LES result (solid line). 

C is a constant in WALE model. 

 

There is another practical advantage to the specification of a classical LES model 

as a lower limit. Experience over the last years has shown that SAS-resolved 

solutions are often questioned in terms of their LES characteristics. However, if 

the SAS model reaches an established LES model limit in unstable flow regimes, 

it is clear that a “proper” LES formulation is achieved. For the DIT case, the ratio 

of /WALE

t tν ν  is equal to one. As this limit is reached, any arguments that SAS does 

not produce a correct LES limit are easily invalidated.  

 

Transformation to other primary variables 

The KSKL model can be transformed to other variables, which can help 

introducing the unsteady characteristics of this model into existing two-equation 

models. The high Reynolds number equations for k-ε and k-ω are (assuming 

kσ σ Φ= ): 
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 (30) 

To complete the model derivation, the additional terms have also been introduced 

into the widely used SST model (Menter, [13]). For details on how the term with 

the von Karman length scale is introduced into the SST model see Egorov and 

Menter [6]. The formulation results in an additional term in the ω-equation of that 

model (added to the right hand side):  

2

2
2 2 2

2 1 1
max max , ,0

SAS SAS

vK j j j j

L k k k
Q S C

L k x x x x

ρ ω ω
ρζ

σ ωΦ

    ∂ ∂ ∂ ∂
 = −     ∂ ∂ ∂ ∂     

 (31) 

with CSAS=2. The max function and the k-derivative term have been introduced to 

avoid any change to the SST models RANS performance for boundary layer 

flows. In unsteady situations, the term including the von Karman length scale is 

dominating the other terms resulting in the full activation of the SAS 

functionality. The resulting model is termed SST-SAS model. 

 

Numerical Treatment 

No proper LES behaviour can be achieved with an overly dissipative numerical 

treatment of the convective terms. In industrial LES, the usage of 2nd order central 

discretisation (CD) schemes is an established technology. However, pure CD 

schemes are not suitable for RANS portions in the flow. This situation is also 

present in hybrid models like DES, where typically a switching function is used 

for applying CD in LES regions, and higher order upwind schemes in the RANS 

parts. The method proposed by Strelets [35], is also applied to the current 

implementation in ANSYS-CFX. An alternative is the usage of a Bounded CD 
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(BCD) scheme as described in Kim [10]. This formulation is currently used in 

ANSYS-Fluent.  

 

Finally, it should be noted that the discretisation of the second derivative of the 

velocity field required for the von Karman length scale, should be computed on a 

compact stencil, involving only three nodes in a 1-D flow.  

 

Scale-Adaptive Simulation 

In the previous chapters, the expression “Scale-Adaptive Simulation - SAS” has 

been used several times without a detailed explanation of its meaning. The 

terminology is essentially based on a URANS model’s ability of adjusting to 

resolved structures in a flowfield through its source terms (source term 

equilibrium). In contrast, classical RANS models adjust the length scale to the 

shear layer thickness, independent of any resolved scales, thereby suppressing the 

formation of turbulent structures. It is widely believed that this behaviour is a 

necessary consequence of the Reynolds averaging and therefore an inevitable 

feature of all RANS models. If nothing else, the derivation of the KSKL model 

and its demonstrated behaviour for unsteady flow predictions show that this belief 

is incorrect. 

 

This seems confusing – “how can a model which is derived on Reynolds 

averaging resolve unsteady structures?” The answer is simply: “the equations 

have no memory of their derivation” (Menter et al., [16]). In other words, the fact 

that the equations have been Reynolds averaged is only known by the human 

observer, the information handed to the momentum equations is only the eddy 

viscosity (or the Reynolds stresses). If the eddy viscosity is small enough, the 

model allows the formation of a turbulent spectrum, provided the flow is 

sufficiently unstable. It is important to note that the momentum equations for LES 

and RANS are identical even though their derivation is entirely different 

(assuming an eddy viscosity model is used in both concepts). In other words, it is 

not the averaging concept which defines the equations, but the details of the 

turbulence model formulation.  
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The KSKL model and other variants of SAS formulations provide an eddy 

viscosity small enough to allow a break-up of large scales into smaller ones under 

unstable flow situations. Unfortunately, there is no theoretical criterion with 

respect to when a flow is sufficiently unstable to produce such a mode. It is very 

likely that this will depend on the specific formulation of the SAS model (e.g. a 

combination of an SAS scale equation with a Reynolds stress model might be less 

stable than a simple eddy viscosity formulation). Nevertheless, there are classes of 

flows for which a resolution down to the grid limit is typically achieved. 

Examples are massively separated flows on the leeward side of bluff bodies or 

strongly swirling flows etc. The industrial applications of the model already cover 

a significant range of flows (see Egorov et al [7]): 

 

In order of avoiding multiple definitions and naming conventions, as observed in 

DES, the following definition is given for SAS models, (Menter and Egorov, 

[20]). 

 

“SAS modelling is based on the use of a second mechanical scale in the 

source/sink terms of the underlying high-Reynolds number turbulence model. In 

addition to the standard input from the momentum equations in the form of first 

velocity derivatives (strain rate tensor, vorticity tensor, …) SAS models rely on a 

second scale, typically in the form of higher velocity derivatives (here a second 

derivative). This is done in a way which allows the model to adjust its length scale 

to resolved structures in the flow” 

 

SAS models satisfy the following requirements: 

 

• Provide proper RANS performance in stable flow regions (boundary layer, 

channel flow, etc.) 

• Allow the break-up of large turbulent structures into a turbulent spectrum 

for unstable flow regimes (cylinder in crossflow, airfoil at high angles of 

attack, flow in cavities, …) 

• Provisions for providing proper damping of resolved turbulence at the high 

wave number end of the spectrum (resolution limit of the grid) (DIT).  
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• Contrary to DES and related methods, the first two points are achieved 

without an explicit grid or time step dependency in the RANS model. Only 

the third requirement has to be based on information on the grid spacing, 

other information concerning the resolution limit (dynamic LES model, 

etc.), or the numerical method (MILES damping etc.). 

 

Figure 10 shows a visual example of scale-adaptivity for the periodic hill flow 

(Fröhlich et al., [8]). The three pictures show the Q-criterion for three simulations 

of this flow. The left picture was computed with a time step of ∆t=0.045UB/h (UB 

– bulk velocity, h- height of hill) which corresponds to an LES time resolution. 

The middle and the right pictures where obtained using a factor 2 and 4 larger ∆t 

on the same numerical mesh (2.5·106 nodes). The colour of the figures depicts the 

ratio of eddy viscosity to molecular viscosity. The larger time steps do not allow 

the same spatial resolution as the small ones, resulting in significantly larger 

turbulent structures. The important aspect is that the eddy viscosity adjusts 

accordingly and increases from left to right. It thereby compensates for the non-

resolved portion of the spectrum. Further increasing the time step will result in a 

steady RANS solution. Figure 11 shows the time-averaged velocity profiles for 

the different simulations compared to a steady-state RANS solution using the SST 

model. For SAS, only the smallest and largest ∆t results are shown for clarity. 

Even for the largest ∆t, there is a clear improvement compared to RANS.  

 

It is interesting to consider the behaviour of a classical Smagorinsky LES model 

( ( )
2

t c Sν = ∆ ) for this situation. As the grid is the same in all three simulations, 

and as the strain rate is lower for large scales than for small scales, one would 

obtain actually the opposite behaviour. The Smagorinsky model would predict a 

lower eddy viscosity for the larger structures and is therefore not scale-adaptive. 

This behaviour would also carry over to DES methods, as they scale like the 

Smagorinsky model once the DES limiter is activated.  
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Figure 10: Turbulent structures for periodic hill flow. Iso-surface for Q=S2-Ω2. Colour gives the 

eddy viscosity ratio µµt
(increases from left to right by factor ~10). Left: ∆t=0.045UB/h, middle: 

∆t=0.09UB/h, right: ∆t=0.18UB/h 

 

 

 

Figure 11: Mean velocity profiles for periodic hill comparing SAS for two different ∆t and SST 

steady state solution with reference LES (Fröhlich et al., [8]). 

 

It is this robust behaviour with respect to space and time resolution which makes 

the SAS model an attractive concept for engineering simulations. In many 

technical flows, the quality of the grid and a proper LES time step cannot be 

maintained in the entire unsteady flow domain. The SAS model will however 

always have a fall-back URANS or RANS solution if the resolution is not 

sufficient for resolving the turbulent scales. In contrast, LES and DES models can 

return undefined model formulations and potential numerical instabilities under 

those conditions, as the eddy viscosity can be unphysically reduced.  
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The limitation of SAS is that it will not switch into scale-resolving mode if the 

flow is not sufficiently unstable. In this case, unsteady behaviour cannot be 

enforced at current point. If this is the case, the next step is switching to DES, 

which allows a reduction of the RANS eddy viscosity by reducing the grid 

spacing. This in turn is often sufficient for rendering the simulation unsteady. As 

stressed before however, the grid and time step will then have to be crafted 

carefully to avoid stress depletion and/or grey zones (meaning undefined model 

behaviour somewhere between RANS and LES).  

 

If the flow instability is still not sufficient for producing the required unsteady 

structures, an interface or forcing terms need to be activated between the RANS 

and LES zones. Examples of such cases have been reported by Davidson [5]. The 

cases studied there are all dominated by the turbulence coming from the upstream 

boundary layers and are therefore not suitable for unsteady SAS or DES model 

simulations without an explicit conversion of energy to the resolved part (e.g. 

forcing). An example of such forcing with the SAS model can be found in Menter 

et al. [23]. 

 

In that respect all the modelling concepts from SAS-DES-LES will find their 

proper range of applications. From an engineering standpoint, the question is not 

“which model is better?”, but “which model is better for a given class of 

applications?” For strongly unstable flows the pendulum will likely swing towards 

the SAS model, for less unstable flows towards DES or even further to more 

advanced embedded LES models.  

 

The flow around a triangular cylinder (Sjunesson et al., [34]) constitutes a perfect 

example of a case suitable for SAS model simulations. Figure 12 shows the 2-D 

section of the grid used. It is extended in the third direction to cover 5 times the 

edge of the triangle. The overall grid size is 1.8⋅106 hexahedral cells. The 

Reynolds number is 45,500 with an inlet velocity of 17.3 m/s. Periodic boundary 

conditions are applied in spanwise direction. The simulations where run with 

ANSYS-Fluent using the BCD (bounded central difference) advection scheme 
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and a time step of ∆t=10-5 s. Since the separation occurs at the corner of the 

geometry, no attempt of resolving the boundary layers was made.  

 

This testcase was computed with the SST-SAS and the SST-DES model. Figure 

13 shows the turbulent structures for both models using Q=106 1/s2. There is 

clearly very little difference between the two pictures indicating that such unstable 

flows do not necessarily require the application of hybrid models like DES but 

can also be captured by advanced URANS models like SAS.  

 

 

 

Figure 12: Numerical grid for flow around triangular cylinder. 

 

 

 

Figure 13: Flow structures for flow around triangular cylinder. Left: SST-SAS model, right: SST-

DES model.  

 

Figure 14 shows the mean axial velocity along the centreline behind the cylinder 

in comparison with the experimental data. The agreement of both models with the 

data is very close. The same is true for the comparison of the velocity profiles at 
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three different stations shown in Figure 15. The agreement between the SST-SAS 

model, the SST-DES model and the experiment is basically within the 

experimental uncertainties.  

 

 

 

Figure 14: Mean axial flow velocity along centreline behind the triangular cylinder. Comparison of 

SST-SAS, SST-DES models and experiment.  

 

 

 

Figure 15: Velocity profiles for three different stations downstream of the triangular cylinder 

(x/a=0.375, x/a=1.53, x/a=3.75). Comparison of SST-SAS, SST-DES models and experiment. 

 

In engineering flows there are frequently flow regions of the nature represented by 

the above testcase – e.g. large separation zones past bluff bodies. These areas are 

typically embedded within larger stable flow zones and are not predicted well by 

steady RANS methods. With SAS models, these areas are automatically 

“detected” and resolved down to the available grid and time step resolution limit. 
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If resolution is low, the model remains in RANS (or URANS) mode, making SAS 

a save pathway into scale-resolving engineering flow simulations.  

 

In the companion article (Egorov et al., [7]), numerous more complex and 

industrially relevant testcases will be shown to demonstrate the SAS models 

potential for the simulation of engineering flows.  

 

Summary 

A new scale equation for turbulence modelling has been proposed. It is based on 

the usage of the exact length scale equation as derived by Rotta. It was argued that 

Rotta’s rationale for avoiding the second derivative of the velocity field in favour 

of the third derivative is not consistent with the inhomogeneous nature of this 

term. The proposed model therefore features the second derivative in the source 

terms of the length scale equation. It was shown that the inclusion of this term is 

sensible, both from a theoretical as well as from a physical standpoint.  

 

The central aspect of the article focused on the unsteady characteristics of SAS 

models. It was shown that the models exhibit both steady solutions and scale-

resolving characteristics depending on the flow situation. The main difference to 

standard RANS models was illustrated for the Decaying Isotropic Turbulence in a 

box. While standard models damp out the resolved scales quickly, the SAS 

modelling approach allows the formation of a turbulent spectrum. Contrary to 

expectations, SAS models do not provide sufficient damping at the high wave 

number end. A limiter was proposed which ensures a proper LES limit of the 

formulation.  

 

Two other examples have been shown to illustrate the behaviour and the potential 

of this method for unsteady flow predictions. The SAS approach can also serve as 

a basis for acoustics simulations, as it is able to generate the source terms for the 

acoustics simulation provided that the flow is sufficiently unstable. 

 

The limitation of the current SAS methodology is that unsteadiness cannot be 

enforced for flows for which the model produces a steady solution. The next step 
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in the development of the SAS methodology is the inclusion of forcing terms to 

allow a transfer of modelled to resolved turbulence, thereby enforcing 

unsteadiness  (Menter et al, [23]). It is also believed that SAS models offer 

interesting alternative for hybrid RANS-LES methods, as they are more 

compatible with LES formulations than standard RANS models.  
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